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Abstract

This paper focuses on the targeted offers problem in direct marketing campaigns.
The main objective is to maximize the feedback of customers purchases, offering
products for the set of customers with the highest probability of positively ac-
cepting the offer and, at the same time, minimizing the operational costs of the
campaign. Given the combinatorial nature of the problem and the large volume of
data, involving instances with up to one million customers, approaches solely based
on mathematical programming methods, said exact, appear limited and infeasible.
In this paper, the use of a hybrid heuristic algorithm, based on the Greedy Ran-
domized Adaptive Search Procedures and General Variable Neighborhood Search,
is proposed. Computational experiments performed on a set of test problems from
the literature show that the proposed algorithm was able to produce competitive
solutions.
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1 Introduction

This work deals with the Targeted Offers problem in Direct Marketing Cam-
paigns – TODMC. The main goal of this problem is to determine which cus-
tomers should receive the offer of several products, in order words, find the
set of potential customers to receive certain offers, maximizing profits and
respecting operational requirements.

Direct Marketing – DM campaigns produces, along time, important data
and information for decision support, which should be carefully analyzed.
Nowadays, with the rise of the analyses dealing with large volume of data, also
known as big-data analysis, this task have been showing up ever more vast and
complex [9]. In this sense, the need of integration between DM and Operations
Research - OR is eminent, which has been presenting problems more and more
complex and intractable without the appropriate tool. Researchers have been
developing efficient and intelligent models since the 80’s [6]. In this context,
OR has been playing a big role in satisfying and attending costumers, what
can be verified in recent literature works relating both areas [3,1,10,2].

Cohen et al. [3] present a case study of TODMC applied to a campaign
involving a large international bank, 11 types of offers and 5 different invest-
ments were considered. Approximately 2,500,000 million potential customers
were available in that campaign. From response models, the benefit of each
offer for each customer was estimated. The results and analysis had validated
the proposal, which was promising to increase the success of future campaigns.
Bhaskar et al. [1] proposed a fuzzy model, including some uncertainty over
the final results. This approach proved to be applicable and efficient, given
the imprecision in predicting consumer reactions.

The model presented by Nobibon et al. [10], state-of-art, embraces sim-
ilar constraints as Cohen et al. [3], but also, incorporating new restrictions,
such as the minimum number of units of each product offered during the cam-
paign, known as Minimum-Quantity Commitment – (MQC). Eight different
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algorithms were proposed by these authors, seven of them were based on exact
approaches and the other were based on the Tabu Search – TS heuristic [5].
Among these proposed methods, the Branch-and-Price and TS showed the
best performance.

The TODMC model presented by Nobibon et al. [10] can be rewrit-
ten as follows: Given a set of clients C = [c1, c2, ..., cm] and a set of offers
O = [o1, o2, ..., on], a cost dij > 0 and profit rij ≥ 0 is associated to each offer
j ∈ O targeted to a given customer i ∈ C. For each client i ∈ C, there is a
number of maximum offers Mi, which indicates the maximum of products that
could be offered to that client. For each product offer j ∈ O, there is a min-
imum number of products Omin

j that should be offered during the campaign,
minimum expected profit R (also known as hurdle rate), available budget Bj

for each and, finally, a fixed cost fj is associated to each product j that is
really used in the marketing campaign.

Since this problem belongs to the class of NP-hard problems, the devel-
opment of an efficient technique for solving the TODMC is of great impor-
tance. Thus, in this present work a new hybrid algorithm, named GGVNS,
is proposed for solving TODMC. It is inspired by the metaheuristics Greedy
Randomized Adaptive Search Procedure – GRASP [4] and General Variable
Neighborhood Search – GVNS [7], which uses the Variable Neighborhood De-
scent –VND [8] as local search strategy. The ability of the GRASP to produce
a set of feasible and good quality solutions was used to generate a first solution
for the GVNS procedure. GVNS was chosen due to its simplicity, efficiency
and its natural search ability to handle with different neighborhoods [12].

2 Methodology

2.1 Solution representation and evaluation

A solution is represented by a binary array R|C|×|O|, where C indicates the
set of available costumers and O represents the possible products to be used
in the campaign. If a given cell si,j|i ∈ C, j ∈ O is equal to “1” (true), the
product j will be offered to the client i; otherwise, the value would be “0”
(false). The goal is to maximize the evaluation function f , given by Eq. (1),
which is composed of two parts: f obj and f inv.

f(s) = f obj(s) + f inv(s)(1)

The part f obj refers to the problem objective function itself and it is cal-
culated by Eq. (2):

f obj(s) =
∑

i∈C

∑

j ∈P

(ri,j − di,j)si,j −
∑

j ∈P

fjyj(2)
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The second part, f inv, is given by Eq. (3), and it is associated with the
attending of the operational constraints of the problem.

f inv(s) =
∑

i∈C

(
fM
i (s)

)
+

∑

j ∈P

(
fO
j (s) + fB

j (s)
)
+ fR(s)(3)

In Eq. (3), fM
i (s) evaluates s regarding to the attending of the client

maximum offers (Mi), since a given client i should not receive more offers
than he expects. On the other hand, fO

j (s), f
B
j (s) and fHR

j (s) are related
to the active products quoted to be used in the campaign, which measures
the following requirements: fO

j (s) checks a solution s regarding to the fact
that the product j had been offered to smaller amount of clients than Omin

j .
fB
j (s) checks s if the available money wallet (budget Bj) for each product
was respected. Finally, fR(s) checks if minimum expected campaign profit
(campaign hurdle rate (R)) was achieved.

2.2 Building an initial solution

This paper presents a novel greedy randomized solution generator, adapted
from the greedy procedure proposed by van Praag [11] and, also, used by
Nobibon et al. [10].

The proposed procedure is mainly based in the weighting of the “best” set
of costumers able to receive an offer. Greedy parameters γ were inserted in
way to select randomized clients sorted by the NPPij =

rij−dij
dij

. If γ is equal

to “1” the selection becomes total greedy (the offers sij with the higher NPPij

are selected first). On the hand, if this value is equal to “0” it becomes totally
random.

2.3 Neighborhood structures

To explore the solution space of the problem, three Neighborhood Structures
– NS, similar to those proposed by Nobibon et al. [10], were developed.

It is necessary to emphasize that all movements described and used in this
work keep the feasibility of the solutions. A brief description of the NS is
presented below.

Swap Clients Intra - NSC−Intra(s): This movement consists in swap two
positions, l,m ∈ C of a given product j ∈ P , such that sl,j = sm,j and
sm,j = sl,j, in a way that the operational constraints of the problem remain
respected.

Swap Clients Inter - NSC−Inter(s): Similar to the movement NTC−Intra(s),
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but this one can be applied in the swap of different products i, j ∈ P , e.g.,
sl,i = sm,j and sm,j = sl,i.

Swap Products - NSP (s): exchanges two different columns i, j ∈ P such
that yi = 1 e yj = 0 or unlike. In these movements, a product that was not
being used in the campaign (yj = 0) can be now part of the active set of
products (yj = 1) used in the campaign.

2.4 Proposed Algorithm

The proposed algorithm, so-called GGVNS, combines the procedures GRASP
and GVNS. The pseudo-code of the GGVNS algorithm is outlined in the
Algorithm 1. In this algorithm, GRASPMaxIter represents the maximum
number of solutions generated by the GRASP procedure and IterMax indicates
the maximum number of iterations performed at a given level of perturbation.

Algorithm 1 GGVNS

Input: GRASPMaxIter and IterMax, Function f obj(.)
Output: Final solution s∗

1: s0 ← Best solution in GRASPMaxIter iterations of the procedure greedy
procedure (Section 2.2), s∗ ← VND(s0, f) and p ← 0

2: while stopping criterion not satisfied do
3: iter ← 0
4: while iter < IterMax and stopping criterion is not satisfied do
5: s′ ← Refine(s∗, p, f)
6: if s′ it is better than s∗ according to the function f then
7: s∗ ← s′ ; p ← 0 and iter ← 0
8: else
9: iter ← iter + 1
10: end if
11: end while
12: p ← p+ 1
13: end while
14: return s∗

An initial solution s0 (line 1 of the Algorithm 1) is created by applying the
GRASP construction phase, described in Section 2.2, duringGRASPMaxIter
iterations.

When the current solution s′ is better than the s∗, the algorithm resets
the level counter and the iteration counter. The local search is made by the
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classical VND procedure [8], using the NS described in the section 2.3 in
random order (line 2 of the Algorithm 2). The “Shaking” procedure, line 4 of
the Algorithm 1, performs the application of a random move of the NS list.

Algorithm 2 Refine

Input: r neighborhoods in random order, level p, solution s and function f obj

Output: Final solution s

1: for i ← 1 to p+ 2 do
2: rneigh ← neighborhood in r chosen at random
3: s′ ← Shaking(s, rneigh)
4: s ← VND(s′, f)
5: end for
6: return s

3 Computational experiments and discussions

The tests were carried out on a OPTIPLEX 9010 Intel Core i7-3770, 3.40 ×
8 GHZ with 32 GB of RAM, with operating system Ubuntu 12.04.3 precise,
and compiled by g++ 4.6.3 using the Eclipse Kepler Release.

To validated the proposal, 4 subgroups of instances were considered: small
(S3), medium (M1 and M2) and large (L), each one with different number of
clients. Each subgroup contains 3 others subgroups (composed with different
number of product offers: 5, 10 and 15) with 18 instances each, which differ
with respect to the profits, costs and boundaries of the operational constraints.

Three set of tests were realized. The first one was realized in order to verify
the power of the proposed GRASP to build good quality initial solutions. The
second set was made with the same parameters as the first one; however, the
local search procedure VND was called after each solution created by the
GRASP. Finally, in the last set of tests the complete proposed algorithm,
GGVNS, was applied. It performs its search over the GRASP best solution
(as described in Algorithm 1).

In each set 216 executions were made. After some preliminary empirical
analysis, IterMax was set in 130 and GRASPMaxIter in 100000 solutions.

The best known results, so-called f ∗
i , were provided by Nobibon et al. [10].

To evaluate the performance of the proposed algorithm, the GAP metric was
used, with gapni =

f∗
i −fn

i

f∗
i

. In this metric, f ∗
i the best known result for each

benchmark problem i and fn
i the value obtained by each algorithm.

Table 1 presents the computational results of the three set of tests. Column
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“n” indicates the method. Columns “Init.” and “H8” are related to the values
presented by the greedy construction algorithm and Tabu Search of Nobibon
et al. [10].

Table 1
Computational results – GAP (%)

n S3 M1 M2 L

5 10 15 5 10 15 5 10 15 5 10 15

Nobibon et al. results [10]

Init. 19.20 17.85 18.34 17.90 16.20 18.36 18.92 19.23 17.84 26.22 24.86 25.65

H8 6.86 6.52 7.76 7.22 8.54 7.60 9.75 9.58 9.11 10.86 11.04 10.23

γ Set of tests I – Pure GRASP

0 19.20 17.85 18.34 17.90 16.20 18.36 18.92 19.23 17.84 26.22 24.86 25.65

0.2 16.12 14.55 17.14 17.44 14.52 16.31 17.12 17.32 16.32 24.98 23.32 23.98

0.4 15.25 13.89 18.98 15.22 13.32 17.56 17.54 18.76 15.56 24.33 22.56 23.67

0.6 12.55 16.25 17.76 15.96 13.76 16.87 17.95 17.85 15.74 23.91 22.16 23.18

Set of tests II – GRASP + VND

0 19.11 15.76 17.10 15.90 14.20 15.96 16.31 16.30 13.00 22.86 20.32 22.31

0.2 15.54 12.34 16.54 15.44 14.43 15.25 15.98 16.72 13.10 19.54 19.54 19.43

0.4 14.22 12.54 16.54 15.00 11.13 14.13 15.31 15.13 12.95 20.56 20.98 20.98

0.6 11.32 11.87 16.76 12.14 10.15 13.33 16.45 15.52 13.03 20.98 20.10 18.76

Set of tests III – GGVNS

0 10.68 6.98 7.77 9.72 9.12 12.15 11.29 9.90 11.15 12.99 12.29 12.15

0.2 6.90 7.14 7.92 7.22 8.67 7.69 10.26 9.59 9.34 11.24 10.94 10.74

0.4 6.79 6.45 7.58 8.47 9.10 7.89 9.68 9.76 9.91 10.86 11.22 10.11

0.6 6.77 6.50 7.49 7.24 8.42 7.63 9.85 9.78 9.44 11.51 11.93 10.22

By analyzing Table 1, it is noteworthy that the proposed GGVNS algo-
rithm was able to obtain lower or equal GAPs compared to those presented
by Nobibon et al. [10], arching lowest values in six groups of instances. The
randomized greedy construction method was validated, since it presents better
values in all γ �= 0. This result is entirely consistent, in view of the potential
of GRASP method in reaching different attraction basins.

As extensions of this work, the development of new constraints is pro-
posed, like non-linearity involving the costs when big amount of products are
being offered. Thus the cost of offering the product j could vary as the num-
ber of clients increases, for example, it can becomes each time more cheaper.
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Similarly, customers who receive more than one offers could have a some op-
erational costs reduced. Such restrictions are entirely consistent and represent
real cases that happen in day-to-day operations of product offering campaigns.
In the computational aspect, the development of new neighborhoods struc-
tures and shaking strategies are proposed.
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