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a b s t r a c t

Distribution planning is crucial for most companies since goods are rarely produced and consumed at the

same place. Distribution costs, in addition, can be an important component of the final cost of the products.

In this paper, we study a VRP variant inspired on a real case of a large distribution company. In particular, we

consider a VRP with a heterogeneous fleet of vehicles that are allowed to perform multiple trips. The problem

also includes docking constraints in which some vehicles are unable to serve some particular customers, and

a realistic objective function with vehicles’ fixed and distance-based costs and a cost per customer visited.

We design a trajectory search heuristic called GILS-VND that combines Iterated Local Search (ILS), Greedy

Randomized Adaptive Search Procedure (GRASP) and Variable Neighborhood Descent (VND) procedures. This

method obtains competitive solutions and improves the company solutions leading to significant savings in

transportation costs.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

Vehicle routing problems (VRP) seek to find routes to deliver

oods from a central depot to a set of geographically dispersed cus-

omers. These problems, faced by many companies, are crucial in dis-

ribution and logistics due to the need of finding cost-effective routes

roviding high customer satisfaction. The classical routing problem,

rst proposed by Dantzig and Ramser (1959) and known as Capaci-

ated VRP, has the objective of minimizing the total distance traveled

y a homogeneous fleet of vehicles to serve the demands of all cus-

omers. Although this problem has been studied for more than five

ecades (Laporte, 2009), real applications remain a challenge. They

eature a variety of operational restrictions and rules that complicate

he problem and may have a significant impact on the solution. These

dditional considerations may affect customers, depots, and vehicles,

or example.
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In this paper, we study a real VRP variant of a major distribution

ompany in Europe that serves around 400 customers. This version of

he problem addresses the following considerations:

1. Limited heterogeneous fleet of vehicles: the company owns a fleet

composed of different vehicle types;

2. Possibility of vehicles performing multiple trips;

3. Docking constraints that restrict certain customers to be served

by certain types of vehicles;

4. For each vehicle, a fixed and variable (transportation) cost.

This problem is a variant of the Heterogeneous Fleet Multi-trip

ehicle Routing Problem (HFMVRP) introduced by Prins (2002). This

ew variant includes docking constraints and a different objective

unction. The goal is to minimize the total cost composed of (i) a fixed

ost for using each vehicle, (ii) a fixed cost per customer visited, and

iii) a variable vehicle-dependent cost per distance traveled. Besides

inimizing total distribution costs, for managerial reasons the com-

any is also concerned about three other routing indicators, namely,

i) the total number of routes employed, (ii) the total distance trav-

led, and (iii) the vehicles’ idle capacity. Their purpose, apart from

aving costs, is to have the least number of routes with full truckload

ehicles.
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The HFMVRP is an NP-Hard problem, and, as such, exact methods

have restricted applicability to obtain good solutions. Heuristic meth-

ods, like the one presented in this paper, are the most common ap-

proach to solve this type of problems. In particular, we use a heuristic

algorithm, the GILS-VND, that combines three different procedures:

1. Iterated Local Search (ILS) (Lourenço, Martin, & Stützle, 2003;

Stützle, 2006);

2. Greedy Randomized Adaptive Search Procedure (GRASP) (Feo &

Resende, 1995; Resende & Ribeiro, 2010);

3. Variable Neighborhood Descent (VND) (Mladenović & Hansen,

1997).

We test our algorithm using real instances provided by the com-

pany. The algorithm proved to be fast and reliable, and the solutions

obtained were better than those implemented by the company in all

instances and dimensions. Overall, the major contributions of the cur-

rent work are:

• The study of a routing problem of a real company that includes

docking constraints, a heterogeneous fleet and multi-trips, and

with a realistic cost function based on distance, type of vehicle

and customers visited.
• The design of a trajectory search metaheuristic combining ILS,

GRASP and VND.
• The development of a new multi-trip constructive method in-

spired by the Clarke and Wright Savings procedure.
• The application of efficient Auxiliary Data Structures to optimize

the search process in the proposed neighborhood structures.

The remainder of this paper is organized as follows. Section 2 re-

views the literature on heterogeneous VRPs. Section 3 defines for-

mally the HFMVRP with docking constraints. Section 4 describes the

GILS-VND algorithm used to solve this problem. Section 5 presents

some computational experiments, and finally Section 6 draws the fi-

nal considerations.

2. Heterogeneous VRPs

VRPs with heterogeneous fleet (HVRP) can be divided according

different features (Penna, Subramanian, & Ochi, 2013), including the

vehicle availability (limited or unlimited) and vehicle costs (fixed or

variable). When the fleet is limited, the number of vehicles and their

capacity are known beforehand, and solution routes must consider

this availability. In the case of unlimited fleet, however, the required

number of vehicles to meet customer demands is unknown initially,

and the problem must determine the fleet composition considering

the vehicles’ cost and capacity.

To the best of our knowledge, the first paper in the literature that

involves an unlimited fleet with fixed costs was proposed by Golden,

Assad, Levy, and Gheysens (1984). This problem is also referred as the

Fleet Size and Mix VRP. The authors designed two heuristic methods

to solve the problem: one based on best insertion and the other based

on the classical Clarke and Wright Savings (CWS) heuristic (Clarke

& Wright, 1964). The latter outperformed the former. They also de-

veloped a mathematical formulation for the variant with dependent

costs, and obtained the first lower bounds for the VRP with unlimited

fixed fleet. More studies on HVRPs with unlimited fleet came there-

after. Gendreau, Laporte, Musaraganyi, and Taillard (1999) included

investment costs in the medium term and short-term operating costs

that fluctuated according to the specific customers attended per day.

The authors suggested an algorithm based on Tabu Search (TS) with

a tour construction phase and an improvement phase that consid-

ered variable costs. They, however, assumed Euclidean problems only,

where nodes were located in the same plane. Choi and Tcha (2007)

obtained lower bounds for all variants of the unlimited fleet prob-

lem using a column generation approach based on the set covering

problem. Baldacci and Mingozzi (2009) proposed a variant based on
set partitioning problem that used bounds provided by a procedure

ased on the Linear and Lagrangian relaxation. The procedure was ap-

lied to solve the main variants of the problem involving limited and

nlimited fleet, with costs and dependent variables. The proposed

ethod was able to solve instances with up to 100 customers, pre-

enting itself as the state-of-the-art exact algorithm applied to the

roblem. Brandão (2009) followed the basic ideas of Gendreau et al.

1999) using a deterministic TS algorithm for the fleet size and mix

RP.

Among the heuristic approaches presented in the literature, note-

orthy are those based on Evolutionary Algorithms. Ochi, Vianna,

rummond, and Victor (1998) developed an algorithm that combines

Genetic Algorithm (GA) with Scatter Search. Liu, Huang, and Ma

2009) proposed a hybrid GA with a hybrid local search procedure.

rins (2009) presented two Memetic Algorithms. The first approach

sed a chromosome encoded as a giant tour, and a split procedure

hat performed the optimal distribution of vehicles and routes. The

econd algorithm used distance calculation strategies in order to di-

ersify the search in the solution space. Tütüncü (2010) proposed a

isual interactive approach based on a greedy randomized adaptive

emory programming search algorithm to study an HVRP variant

ith backhauls. Penna et al. (2013) devised an algorithm based on

LS which used a random VND in the local search phase. More stud-

es on different variants of the HVRP are compiled by Baldaccci, Bat-

arra, and Vigo (2008), Imran, Salhi, and Wassan (2009) and Vidal,

rainic, Gendreau, and Prins (2013).

The HVRP is gaining attention from researchers due to its applica-

ility in real cases. In the past years, a variety of papers, including this

ne, have addressed more realistic setups involving a heterogeneous

eet with additional constraints. Belfiore, Yoshizaki, and Tsugunobu

2009) studied a real-life HVRP with time windows and split deliv-

ries in a major Brazilian retail group. The authors generated some

nitial solutions that were improved by scatter search. Kritikos and

oannou (2013) addressed an HVRP with time windows, in which

ome vehicles were loaded above their nominal capacity (overloads).

he authors developed a sequential insertion heuristic with a com-

onent in the selection criteria of the non-routed customers and a

enalty in the objective function for overloads. Leung, Zhang, Zhang,

ua, and Lim (2013) analyzed a two-dimensional loading HVRP us-

ng a simulated annealing with a heuristic local search. Ribeiro, De-

aulniers, Desrosiers, Vidal, and Vieira (2014) studied the workover

ig routing problem, which can be seen as a variation of the VRP

ithout a depot. In the workover rig routing problem, routes of a

eterogeneous fleet of rigs need to be found to minimize the total

roduction loss of the wells over a finite horizon. The authors pro-

osed and compared four heuristics: a variable neighborhood search

euristic, a branch-price-and-cut heuristic, an adaptive large neigh-

orhood search heuristic and a hybrid GA. Another application of

he adaptive large neighborhood search method was presented by

morim, Parragh, Sperandio, and Almada-Lobo (2014). The authors

onsidered a real heterogeneous fleet site dependent VRP with mul-

iple time windows faced by a Portuguese food distribution company.

iang, Ng, Poh, and Teo (2014) also studied an HVRP with time win-

ows and employed a two-phase TS algorithm. Dayarian, Crainic,

endreau, and Rei (2015) designed a branch-and-price methodology

o tackle a real-life milk collection problem with heterogeneous fleet,

ulti-depot and other resource constraints. Another real application

as handled by de Armas and Melián-Batista (2015), who proposed a

ariable neighborhood search algorithm to solve an HVRP with mul-

iple and soft time windows and customers’ priorities. Although the

roblems exposed in this paragraph and our problem have different

onstraints, most of the algorithms designed to solve them rely on

euristic searches like ILS or variable neighborhood search.

The HVRP variants that most resemble the variant we study in

his paper are by Prins (2002) and Caceres-Cruz, Grasas, Ramalhinho,

nd Juan (2014). The reader will find a detailed comparison of both in
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Algorithm 1: GILS-VND.

Input: GRASPmax, IterMax, γ , Function f ( · )
Output: Solution s

s0 ← best solution in GRASPmax iterations of the procedure1

BuildInitialSavingsSolution (γ )

s∗ ← VND(s0, f )2

p ← 03

while stop criterion not satisfied do4

iter ← 05

while iter < IterMax and stop criterion not satisfied do6

s′ ← Refine(s∗, p, f )7

if f (s′) < f (s∗) then8

s∗ ← s′;9

p ← 0;10

iter ← 011

end12

else13

iter ← iter + 114

end15

end16

p ← p + 117

end18

return s19
aceres-Cruz et al. (2014, Section 3). Our problem and these other two

roblems are routing problems that include a heterogeneous fleet

ith the possibility of performing multiple trips (HFMVRP). On one

and, Prins (2002) studied a large-scale real case of a French furni-

ure manufacturer with 775 stores. In Prins’ problem, a time restric-

ion of 5 hours on routes was imposed and the largest demand of

store could not exceed the smallest vehicle’s capacity. The author

eveloped a CWS-based algorithm with two heuristics, New Merge

euristic (MER) and MER2, to address the single- and the multi-trip

roblems, respectively. The algorithm solutions were improved via a

teepest descent local search and a tabu search with a simple biob-

ective approach: minimizing the total duration of all trips and the

umber of vehicles. The results obtained outperformed the solutions

sed by the furniture company. On the other hand, Caceres-Cruz et al.

2014) also studied an HVRP with multi-trips inspired on the same

istribution company that is discussed in the present work. The au-

hors built a randomized hybrid algorithm based on the CWS heuris-

ic, called Rand-MER. The Rand-MER is a biased randomized ver-

ion of the MER algorithm that also uses local search methods based

n cache and splitting techniques. The authors carried out exten-

ive numerical experiments to compare the performance of the MER
nd the Rand-MER algorithms. To do so, they adapted the instances

ound in Prins (2002), Golden et al. (1984) and Li, Golden, and Wasil

2007) to make an objective comparison. They also modified the MER
lgorithm to run 10 company instances analyzed in our paper. The

and-MER algorithm was able to outperform MER in all experiments

onducted. Unlike our paper, both settings considered by Prins (2002)

nd Caceres-Cruz et al. (2014) did not consider docking constraints

nd only included distance-based costs in the objective functions.

. Problem definition

The HFMVRP described in this paper can be defined over an undi-

ected graph G = (V, E), where V = {0, 1, . . . , n} and E = {(i, j)|i, j ∈
, i < j} represent the vertices and the edges of the graph, respec-

ively. The depot is denoted by 0 and vertices i ∈ V�{0} represent the

customers, each one with a nonnegative demand di. Each edge (i, j)

E has an associated nonnegative cost or distance cij. There is a fleet

composed of m different types of vehicles, i.e., T = {1, . . . , m}. For

ach t ∈ T there are mt available vehicles with capacity qt (in boxes

f products), fixed cost cft per vehicle used, and variable cost cdt per

istance traveled. There is also a fixed cost cct incurred per customer

isited.

We let S = {(r, t) | t ∈ T, r = (v0, v1, . . . , vn(r)+1)} be a set of valid

outes, where vi ∈ V (0 ≤ i ≤ n(r) + 1), n(r) denotes the number of

ustomers visited in route r and t is the vehicle type associated with

he route. All routes start and end at the depot, so for each route r, we

ave v0 = vn(r)+1 = 0. Therefore:

• The route total demand is: Qt
r = ∑n(r)

i=1
dvi

;

• The route total cost is: Ct
r = c ft + n(r) × cct + cdt

∑n(r)
i=0

cvi,vi+1
;

• The route residual capacity is: Et
r = qt − Qt

r .

This set of features characterizes the HFMVRP tackled in this work.

he problem seeks to build a set S∗ that minimizes the total cost func-

ion given by:

C =
∑

(r,t)∈ S

C t
r (1)

ote that the cost of a route, Ct
r , is composed of three cost terms. For

onvenience, we group these terms by type for all routes and express

he objective function as TC = CF + CC + CD where:

• CF = ∑
(r,t)∈S c ft is the total fixed cost of the vehicles used.

• CC = ∑
(r,t)∈S n(r) × cct is the total cost of the customers visited.

• CD = ∑
(r,t)∈S cdt

∑n(r)
i=0

cvi,vi+1
is the total cost of the distance trav-

eled by all vehicles.
A valid route must satisfy the following criteria:

1. Each route must start and end at the depot.

2. Each customer is assigned to exactly one route.

3. Each customer must be compatible with the vehicle type assigned

to its route, i.e., given a route (r, t), ∀vi ∈ r, comp(t, vi) = 1, where

comp(t, vi) is equal to 1 if the vehicle type t can serve customer vi,

and 0 otherwise.

4. The sum of customer demands in the route cannot exceed the

maximum capacity of the vehicle type t assigned to that route,

i.e., Qt
r ≤ qt .

5. Each vehicle type can perform one or two routes, that is, it can be

a single- or a multi-trip vehicle, respectively.

Fig. 1 displays a solution example for an HFMVRP with 12 cus-

omers, 2 types of vehicles, and only one vehicle per type. The “Pa-

ameters” table shows the parameter values for each vehicle type.

he “Compatibility” table indicates the values of comp(t, i), for t ∈ {A,

} and i ∈ V�{0}. Note that a type B vehicle cannot visit customers

or 10. The “Solution” table displays the resulting routes, with the

otal demand served, distance traveled, total cost and residual capac-

ty. Note that the vehicle type A performs two routes, 1 and 3. The

raph shows the sequence of the three routes: vertices have the cor-

esponding customer demand, and arcs the corresponding distance

ext to them. For this example, CF = 50, CC = 17, CD = 68, and the

otal cost is TC = 135.

. Methodology

.1. The GILS-VND algorithm

The algorithm proposed in this paper, dubbed GILS-VND, com-

ines an Iterated Local Search (ILS), a Greedy Randomized Adap-

ive Search Procedure (GRASP), and a Variable Neighborhood De-

cent (VND). Its pseudocode is outlined in Algorithm 1. It requires the

ollowing input parameters: (i) GRASPmax is the number of GRASP
xecutions to construct an initial solution, (ii) IterMax is the maxi-

um number of iterations performed at a given perturbation level,

iii) γ restricts the size of the candidate list, and (iv) the objec-

ive function f(·) (Eq. (1) defined in Section 3). The GILS-VND
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Fig. 1. HFMVRP example.

Algorithm 2: BuildInitialSavingsSolution.

Input: γ , Function f ( · ), set of vehicle types T , set of customers

V

Output: Solution s

feasible ← false;1

while f easible �= true do2

s ← empty solution3

allocated ← set of customers V to be visited4

forall vType ∈ T do5

vType ← random vehicle type6

vTypeDemands ← customer demands that can be served7

by vehicle type vType

vTypeRoutes ← Savings(vType, vTypeDemands)8

CL ← set of available routes vTypeRoutes ordered by its9

residual capacity

foreach v ∈ vType and |CL| �= 0 do10

RCL ← first γ × |CL| elements of CL11

s ← allocate a random route ∈ RCL to vehicle v12

update allocated with customers served by vehicle v13

and erase route from vTypeRoutes

CL ← set of available routes vTypeRoutes ordered by14

its residual capacity

end15

end16

if there are customers ∈ allocated to be visited then17

vTypeMT ← random vehicle type able to perform18

multi-trip

vTypeDemands ← customer demands that can be served19

by vehicle type vTypeMT

vTypeRoutes ← Savings(vTypeMT , vTypeDemands)20

s ← allocate all routes ∈ vTypeRoutes to vehicles of type21

vTypeMT

update allocated with new attended customers22

end23

if all customers ∈ allocated have been visited then24

f easible = true25

end26

end27

return s28

Algorithm 3: VND.

Input: rIntra intra-route neighborhood structures in random

order

Input: rInter inter-route neighborhood structures in random

order

Input: Solution s0 and Function f ( · )
Output: Solution s with possibly better quality than initial

solution s0 according to Function f ( · )
s ← s01

kInter ← 12

while kInter ≤ |rInter| do3

Find the best neighbor s′ ∈ N(kInter)(s)4

if f (s′) < f (s) then5

s ← s′6

kInter ← 17

kIntra ← 18

while kIntra ≤ |rIntra| do9

Find the best neighbor s′ ∈ N(kIntra)(s)10

if f (s′) < f (s) then11

s ← s′12

kIntra ← 113

end14

else15

setLocalOptimum(s, k)16

kIntra ← kIntra + 117

end18

end19

end20

else21

setLocalOptimum(s, k)22

kInter ← kInter + 1;23

end24

end25

return s26

w
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algorithm works as follows. Line 1 calls the BuildInitialSavingsSo-

lution procedure to obtain the best initial solution after GRASPmax

runs (Algorithm 2). Line 2 calls the VND procedure to perform a local

search (Algorithm 3). Line 3 initializes p, a variable that regulates the

“power” of diversification, and lines 4–18 perform the main ILS loop
hile the stopping condition is not satisfied. Within the ILS, line 7

alls the Refine procedure that perturbs the solution (Algorithm 4).

ine 19 then returns the final solution.

The BuildInitialSavingsSolution procedure (Algorithm 2) uses the

WS algorithm (line 8) adapted to the multi-trip case. At each itera-

ion (lines 5–16), the order of vehicle types is chosen randomly. Thus,

ifferent sets of routes can be generated according to the capacity

f each vehicle type. A restricted candidate list is created (line 11)

y sorting the routes in non-decreasing order of idle capacity, that
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Table 1

HFMVRP solution.

Solution representation

Route (r, t) Customers visited

(1,A) (0,9,11,7,5,12,0)

(2,B) (0,4,1,2,3,6,0)

(3,A) (0,8,10,0)

Auxiliary Data Structures (ADSs)

i = (1, 2, 3)

SumDemand[i] (98, 60, 25)

MinDemand[i] (8, 5, 5)

MaxDemand[i] (35, 30, 20)

NeighborhoodStatus[j][i]

[2-opt][i] (1, 0, 1)

[Or-optk][i] (1, 0, 1)

[Exchange][i] (1, 0, 1)

[Shift(1,0)][i] (1, 0, 1)

[Swap(1,1)][i] (1, 0, 1)

m

k

(

t

s

r

t

T

m

t

A

s

4

h

(

b

l

n

s

s

a

t

s, routes with total demand closer to the capacity of the current

llocated vehicle type, vType, are listed first. In this sense, routes that

ave its demand equal to the capacity of the vehicle are the most

oveted. The input parameter γ regulates the size of the candidate

ist. All available vehicles of the vehicle type vType are assigned to

route until vTypeRoutes is empty or vehicles of that type are al-

eady allocated (line 10). If there are still customers to be allocated

fter this first phase, a vehicle type able to perform multi-trips is se-

ected and all customers with demand lower or equal to that vehicle

apacity are allocated and grouped according to the same Clarke and

right Savings algorithm (lines 17 to 23). Line 22 updates the vec-

or allocated with the clients attended by multi-trip vehicles of type

TypeMT . If customers remain still unassigned (line 24), the proce-

ure is repeated.

Algorithm 4: Refine.

Input: rpert perturbation neighborhoods in random order

Input: Initial solution s, Level p and Function f ( · )
Output: Solution s

for i ← 1 To p + 2 do1

k ← SelectNeighborhood(rpert )2

s′ ← Shake(s, k)3

end4

s ← VND(s′, f )5

return s6

The VND procedure (Algorithm 3) performs a local search using

he neighborhood structures described in Section 4.2. The exploration

s done via inter-route movements (line 4) and intra-route move-

ents (line 10). Lines 16 and 22 trigger the setLocalOptimum pro-

edure, which sets neighborhoods as “local-optimum”. This mark is

sed by the auxiliary data structure NeighborhoodStatus[j][i], de-

cribed in Section 4.3.

The Refine procedure (Algorithm 4) takes the current solution, s∗,

elects randomly the neighborhood structures, rpert (line 2), and per-

orms a shake (line 3). This is done iteratively (lines 1–4) according

o the variable p. If a given solution is not improved for a number of

terMax iterations (line 6 of Algorithm 1), variable p is incremented

line 17 of Algorithm 1) so that p + 2 random moves (shakes) will be

pplied to the current solution. This mechanism balances exploration

gainst exploitation.

.2. Neighborhood structures

Five different neighborhood structures are applied to explore the

olution space of the problem. The first three are intra-route move-

ents while the last two are inter-route movements. It is important

o note that movements that lead to infeasible solutions are not al-

owed.

2-opt move: A 2-opt move is an intra-route movement that

onsists in removing two non-adjacent arcs and inserting two new

rcs, so that a new route is formed. Fig. 2 exemplifies the movement:

dges (4, 6) and (8, 5) of Route 2 are removed and edges (4, 8)

nd (6, 5) are inserted instead. Note that an inversion took place

nvolving customers 6, 16 and 8, and now the sequence is 8–16–6.

or a symmetric problem, the total distance among these customers

emains unaffected.

Or-optk move: An Or-optk move is an intra-route movement that

onsists in removing k consecutive customers from a given route

nd reinserting them into another position of the same route. This

ove is a generalization of the Or-opt proposed by Or (1976), in

hich the removal involves up to three consecutive customers only.

ig. 3 illustrates the movement with k = 1, where customer 5 is
oved to the last position of Route 2. For this particular case when

= 1, the movement is also known as Reinsertion in the literature

Subramanian, Uchoa, & Ochi, 2013).

Exchange move: An Exchange move is an intra-route movement

hat consists in exchanging two customers in the same route. Fig. 4

hows an Exchange of customers 5 and 18 in Route 2.

Shift(1,0) move: A Shift(1,0) move is an inter-route movement that

elocates a customer from one route to another.

Swap(1,1) move: A Swap(1,1) move is an inter-route movement

hat exchanges two customers from different routes.

All neighborhood structures are used as a perturbation strategy.

he application of these moves occurs randomly with no improve-

ent verification in the objective function. This mechanism is a key

o diversify and explore the solution space (exploration-exploitation).

fter applying a given move, the NeighborhoodStatus[j][i] vector (de-

cribed below) is updated.

.3. Auxiliary Data Structures (ADSs)

In order to intensify and optimize the search of the neighbor-

ood structures, some Auxiliary Data Structures (ADSs) of Penna et al.

2013) have been adapted and applied to the multi-trip HFMVRP. A

rief description is given below:

For i ∈ {1, . . . , #nRoutes} and j ∈ {1, . . . , #nNeighborhoods} the fol-

owing data structures are used. Variable #nRoutes indicates the total

umber of routes and #nNeighborhoods the number of neighborhood

tructures (see Section 4.2).

• SumDemand[i]: it stores the sum of all customer demands as-

signed to route i.
• MinDemand[i]: it stores the minimum demand among all cus-

tomers in route i.
• MaxDemand[i]: it stores the maximum demand among all cus-

tomers in route i.
• NeighborhoodStatus[j][i]: it is a boolean value that indicates

whether the neighborhood j is in a local optimum regarding route

i. Upon a full application of all neighboring structures by a lo-

cal search method, all routes are marked as “local-optimum”.

When a solution is “shaked” (Line 3 of Algorithm 4), some “local-

optimum” markers are removed from the routes that have been

affected by that perturbation.

Table 1 displays the representation and the ADSs of the HFMVRP

olution provided in Fig. 1. Note that route 2 is not in a local-optimum

s seen in the values of NeighborhoodStatus[j][2], so moves involving

his route should be verified.
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Fig. 2. Example of 2-opt move.

Fig. 3. Example of Or-optk move.

Fig. 4. Example of Exchange move.

(

1

3

t

o

n

M

c

(

a

t

s

m

t

i

5. Computational experiments

The GILS-VND algorithm was implemented in C++ with assis-

tance from OptFrame framework (http://sourceforge.net/projects/

optframe/). This optimization framework has been successfully

applied in guiding the implementation of neighborhood structures

(see Coelho et al., 2012). In general, frameworks are based on

the researchers’ experience with the implementation of multiple

methods for different problems (Coelho et al., 2011). For instance,

Souza et al. (2010) and Coelho et al. (2014) employed OptFrame

to an open-pit-mining problem, and to load energy forecasting,

respectively. The computational framework OptFrame has, be-

sides standardized optimization structures, statistical and checking

modules which are able to provide the ability of verifying the

consistency of the new designed method (as will be described in

Section 5.1).
The GILS-VND tests were conducted on a Pentium Core 2 Quad

Q6600), 2.4 GHZ with 8 GB of RAM, with operating system Ubuntu

0.10 Kernel 2.6.32-33, and compiled by g++ 4.5.2, using the Eclipse

.1 IDE. The first step before running computational experiments was

o calibrate the input parameters. The algorithm requires the number

f iterations to obtain an initial solution (GRASPmax), the maximum

umber of iterations performed at a given perturbation level (Iter-

ax), and γ that affects the RCL. The BuildInitialSavingsSolution pro-

edure spends 40 milliseconds on average to build an initial solution

see Table 2 below). Thus, GRASPmax was set to be 300, that is, the

lgorithm generates all initial solutions in less than 15 seconds. Since

he total running time will be set to 5 minutes (see below), 15 seconds

eem reasonable for the initial solution generation. As for the maxi-

um number of perturbations without improvement at each level of

he ILS, we decided to use the same value as in Souza et al. (2010),

.e., IterMax = 5, 000. Finally, we set γ = 0.4 because that renders a

http://sourceforge.net/projects/optframe/
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Table 2

CheckModule Output – computational times.

Component #Tests Average(milliseconds)

Test 1: building an initial solution

Constructive 30 40,568

Test 2: update cost of the ADS

ADSManager 94,885 0.1222

Test 3: complete evaluation of a solution

Evaluator 94,885 0.0385

Test 4: cost of apply method

2-Opt 256 0.0039

Or-opt1 708 0.0039

Exchange 1144 0.0035

Shift(1,0) 12,986 0.0074

Swap(1,1) 33,402 0.0071

Test 5: calculating the cost of a move

2-Opt 128 0.0783

2-Opt-Optimized 128 0.0014

Or-opt1 354 0.0799

Or-opt1-Optimized 354 0.0014

Exchange 572 0.0790

Exchange-Optimized 572 0.0015

Shift(1,0) 6493 0.0921

Shift(1,0)-Optimized 6493 0.0016

Swap(1,1) 16,701 0.0917

Swap(1,1)-Optimized 16,701 0.0016

Table 3

CheckModule Output – efficiency of the neighborhood structures.

Average number of moves from neighborhood in 30 tests

Neighborhood

Valid neighborhood

moves Standard Optimized Imp. (%)

2-Opt 154 869 869 0.00

Or-opt1 426 3,030 3,030 0.00

Exchange 688 3,030 3,030 0.00

Shift(1,0) 7,813 738,630 8,106 98.90

Swap(1,1) 20,097 296,258 69,307 76.60
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ood balance between cost and residual capacity in the candidate

outes.

The next three sections describe the computational experiments

onducted to measure the efficiency of the algorithm. Section 5.1

valuates the neighborhood structure efficiency. Section 5.2 mea-

ures the time required to reach the solution currently used by the

ompany, based on run time distributions. Finally, Section 5.3 pro-

ides detailed results with all costs involved comparing GILS-VND,

and-MER and the company solutions.

.1. Detailed results on algorithm implementation

The first experiment aims at verifying the quality and efficiency

f the neighborhood structures implemented in the GILS-VND
lgorithm. Tables 2 and 3 exhibit the typical indicators from

heckModule’s output of the OptFrame framework. The first col-

mn in Table 2 indicates the OptFrame component. All five neigh-

orhood structures are implemented in OptFrame core as sequential

eighborhoods. The “Optimized” neighborhood structures have an

fficient reimplementation that discards inter-route moves that vi-

late maximum capacities of a given vehicle (vectors SumDemand[i],

inDemand[i] and MaxDemand[i] helped in this task). The number

f tests for each component and the average time spent in each ex-

eriment are displayed in the second and third columns of Table 2,

espectively.

Tests 1 and 2 display the computational time to build an initial so-

ution and the ADS, respectively. Thirty initial solutions were gener-

ted with an average time of 0.041 seconds per solution, and 94,885

ifferent feasible solutions were considered through the neighbor-

ood structures described in Section 4.2. Test 3 indicates the average
ime spent to evaluate a solution. Test 4 shows the time required to

pply each move generated by the neighborhood structures. Shift(1,0)

ove is the most costly to apply, requiring 0.0074 milliseconds. This

esult is consistent since this move changes the size of routes. Test

shows the computational time spent to calculate the cost of the

ove, i.e., the impact on the evaluation function of changing to the

elected neighbor. In the “Optimized” version of each neighborhood,

he cost calculation benefits from ADSs, not needing to perform the

hange in the solution and to recalculate the objective function value.

his strategy improved the execution time up to 57.6 times for the

eighborhood Shift(1,0), reducing the average time from 0.0921 to

.0016 milliseconds.

On the other hand, Table 3 shows the average number of solutions

enerated by each neighborhood structure in 30 tests. The second col-

mn indicates the average number of moves that lead to other feasi-

le solutions; the third and fourth columns indicate the average num-

er of moves generated by the standard OptFrame implementation

nd the OptFrame implementation using ADSs, respectively, and the

ast column indicates the percentage reduction of ineffective moves

alculated using Eq. (2).

mprovement (%) = Standard − Optimized

Standard
∗ 100 (2)

Clearly, the use of standard neighborhood structures provided by

ptFrame and the implementation of efficient ADSs led to a drastic

eduction in the number of moves to find the same number of valid

olutions: 98.90% and 76.60% less moves for Shift(1,0) and Swap(1,1),

espectively. This improvement is achieved mainly because most of

he infeasible solutions can be disregarded directly before proceed-

ng further just by analyzing the values of the ADSs. Many moves

rom the Swap and Shift neighborhood structures lead to infeasible

olutions, i.e., the vehicle’s capacity and/or docking constraint are vi-

lated because a new customer from another route is included. Al-

hough the proposed algorithm may still reach the same final so-

ution (since infeasible solutions can be discarded after evaluation),

ptFrame provides two specific mechanisms to avoid such unneces-

ary moves and calculations. The first mechanism is to use the pre-

omputed information in the ADS to disallow the selection of moves

hat could violate constraints (e.g., by testing whether the customer

o be inserted in the route has a bigger demand than the vehicle’s

dle capacity). In that case, the move is never generated by the itera-

or nor applied to the current solution. The second mechanism is to

void the generation of moves corresponding to a local optimum of

pecific neighborhood structures. For example, if the first route is in

local optimum regarding all intra-route neighborhood structures,

future intra-route move will never be tested in this route unless a

erturbation or an inter-route move has removed that route from the

ocal optimum. Note that using ADSs in intra-route neighborhoods

oes not reduce the number of moves, since vehicle loads remain un-

hanged.

.2. Time-to-target plot results

In the second experiment, time-to-target plots (TTTplots) (Feo

Smith, 1994) were performed to check the efficiency of the

ILS-VND algorithm in reaching the solution currently used by the

ompany. TTTplots display the probability (the ordinate) that an al-

orithm will find a solution at least as good as a given target value

ithin some given running time (the abscissa). TTTplots are also used

y Ribeiro and Resende (2012) as a way to characterize the running

imes of stochastic algorithms for combinatorial optimization.

Aiex, Resende, and Ribeiro (2007) describe a Perl program to cre-

te TTTplots for measured times that are assumed to fit a shifted

xponential distribution, as presented for a GRASP algorithm (Aiex,

esende, & Ribeiro, 2002). Such plots are very useful to compare

ifferent algorithms or strategies for solving a given problem and
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Fig. 5. Time-to-Target Plot - HFMVRP_1.

Table 4

Company’s fleet composition.

Veh. type Cap. Avail. MT Costs (in € )

(t) (qt) (mt) cft cct cdt

a 222 8 No 88.30 8 0.2446

b 414 5 No 115.70 8 0.3195

c 482 139 Yes 123.29 8 0.3315

d 550 3 No 148.87 8 0.3315

e 616 6 No 172.23 8 0.364

f 676 3 No 178.92 8 0.364

g 752 4 No 187.39 8 0.364

h 1,210 1 No 238.46 8 0.364

Table 5

Results for real multi-trip instances: GILS-VND vs. Rand-MER (distances in kilome-

ter).

Rand-MER GILS-VND Differences

Instance #nCustomers Best Average Best Average Gap (%) Gap (%)

(1) (2) (3) (4) (3–1) (4–2)

A 372 39,534 39,841 38,995 39,572 −1.36 −0.68

B 366 41,072 41,399 40,670 41,243 −0.98 −0.38

C 371 49,669 50,082 46,116 49,639 −7.15 −0.89

D 364 31,378 31,543 31,300 31,600 −0.25 0.18

E 372 45,485 45,836 45,300 46,206 −0.41 0.80

F 373 45,275 45,681 42,100 44,942 −7.01 −1.64

G 372 45,165 45,493 44,983 45,883 −0.40 0.85

H 374 44,386 44,909 44,230 45,114 −0.35 0.46

I 370 49,053 49,354 47,345 48,292 −3.48 −2.20

J 372 38,973 39,252 35,366 38,074 −9.25 −3.10
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have been widely used as a tool for algorithm design and compari-

son.

This experiment was run 100 times by the GILS-VND algorithm

on a company instance with a total cost of € 32,472.37. This corre-

sponds to instance K (see Tables 6 and 7). The execution ended once

the algorithm found the target value (i.e., the same cost). Fig. 5 shows

the empirical probability curve. Note that our algorithm was able to

find the company solution in all experiments in less than 8.65 sec-

onds. Based on this, we adopted a maximum computational time of

5 minutes in the experiments of Section 5.3.

5.3. Benchmark results

To test the algorithm performance, we used 14 real instances that

correspond to 14 different working days of the distribution company.

We conducted two benchmark experiments: one to compare the per-

formance of our algorithm and the Rand-MER algorithm by Caceres-

Cruz et al. (2014), and the other to compare the results obtained by

our algorithm with those obtained by the company. For the former,

we considered the 10 instances presented in Caceres-Cruz et al. (2014,

Table 4) (denoted by A, B, …, J), and for the latter, we considered five

additional instances (denoted by K, L, … , O). The company distributes

its products to 382 customers but it is frequent to have customers

with zero demand for a particular day. This may be due to several

reasons, for example, a store with low sales in the previous day that

can wait another day to replenish, or a store that closes for a local

holiday. The company has a fleet of 169 vehicles: Table 4 shows the

composition of this fleet by vehicle type, with its capacity (in boxes),

the possibility of performing multiple trips, and the corresponding

costs (fixed cost per vehicle, variable distance cost, and cost per cus-

tomer visited, respectively).
GILS-VND vs. Rand-MER . This experiment aims at comparing

he performances of the GILS-VND algorithm and the Rand-MER
lgorithm. As stated in Section 2, the Rand-MER solves a similar

roblem but does not include docking constraints and it minimizes

otal distance only. In this first benchmark, the GILS-VND algorithm

as adapted to make the comparison consistent, that is, we changed

he objective function to consider distances exclusively, and disre-

arded the docking constraints. The results are displayed in Table 5.

he table includes the number of customers with positive demand in

hat instance, and values are expressed in kilometer. The Rand-MER
est and average values are excerpted from Table 4 in Caceres-Cruz

t al. (2014). It is worth mentioning that Rand-MER was run for

0 minutes whereas GILS-VND was run for only 5 minutes. The

ILS-VND algorithm finds better solutions in all instances, with per-

entage gaps in the total distance traveled by all vehicles that go from

.25% (Instance D) to 9.25% (Instance J). The smallest gap happens

o be in the instance with the lowest demand, i.e., Instance D with

3,078 boxes delivered to 364 customers. Instance D is also the only

nstance with no multi-trips. We may infer that the performance of

oth algorithms is similar when handling single-trip problems. On

he contrary, the largest gaps tend to occur in instances with higher

emands, i.e., Instances C, F, and I with demand equal to 91,901 boxes,

5,773 boxes and 89,596 boxes, respectively. This may imply a better

erformance of the GILS-VND algorithm in instances where multi-

rips are more decisive. So GILS-VND probably handles demand al-

ocations to different vehicle types more efficiently. Finally, the differ-

nce between average values of both algorithms are closer, although

ILS-VND beats Rand-MER in 6 out of 10 instances.

GILS-VND vs. Company . This second benchmark experiment

ompares the solutions that the company employed in the corre-

ponding day with those obtained by the GILS-VND algorithm. To

o that, five new instances were analyzed: K, L, M, N and O. The

rst three correspond to days with low demand where no multi-trips

ere performed whereas the last two had total demand greater than

he capacity of all vehicles, so multiple trips were indispensable to

erve all customers. Our algorithm was run 30 times per instance

ith 5 minutes per run. Tables 6 and 7 show the results of the best

olution obtained for each instance. Table 6 reports the total costs

TC) of the instances decomposed into the three cost categories de-

ned in Section 3: the fixed vehicle cost, CF, the store cost, CC, and the

istance cost, CD. The table also displays the gap between both solu-

ions. The store cost may seem independent of the solution since all

ustomers must be served. In fact, this is not necessarily true in the

olution presented by the company in which it was possible that a

ustomer was served using two different trips, incurring a double cost

er customer visited. Table 7 presents the routing indicators that the

ompany uses for managerial reasons: the total number of routes em-

loyed (#nRoutes), the total distance traveled in kilometers (#nKm),

nd the total vehicles’ idle capacity in boxes (#nE). For the multi-trip
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Table 6

Comparison of results I: GILS-VND vs. Company.

GILS-VND Company GILS-VND Company GILS-VND Company GILS-VND Company TC

Instance CF(€ ) CF(€ ) CC(€ ) CC(€ ) CD(€ ) CD(€ ) TC(€ ) TC(€ ) Gap (%)

Single trip

K 16,498 17,223 2944 2944 11,065 12,305 30,507 32,472 −6.05

L 8064 9117 2528 2528 5735 7353 16,327 18,997 −14.05

M 9174 10,066 2536 2536 6308 7665 18,018 20,266 −11.09

Multi-trip

N 25,815 29,543 2992 3032 16,716 19,075 45,523 51,650 −11.79

O 22,943 25,931 3008 3072 14,895 16,761 40,846 45,764 −10.62

Table 7

Comparison of results II: GILS-VND vs. Company.

GILS-VND Company GILS-VND Company GILS-VND Company

Instance #nRoutes #nRoutes #nKm #nKm #nE #nE

SINGLE TRIP

K 134 134 33,403 36,733 1871 4533

L 66 71 17,601 22,185 894 4325

M 75 80 19,334 23,351 1003 3658

MULTI-TRIP

N 203/34 234/86 50,244 57,388 5420 19,164

O 181/12 205/56 44,639 50,423 3350 14,667

Table 8

Statistical results for the new set of instances: GILS-VND vs. Company.

GILS-VND

Instance Company Best Average Std. dev. Gap (%)

K 32,472 30,507 30,692 70 −5.48

L 18,997 16,327 16,427 42 −13.53

M 20,266 18,017 18,146 43 −10.46

N 51,609 45,523 45,813 100 −11.23

O 45,764 40,846 40,995 66 −10.42
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nstances, the second number in the “#nRoutes” column represents

he number of vehicles that performed two trips.

The GILS-VND algorithm was able to obtain cheaper solutions

n all instances. The numbers reported belong to the best solution

btained by our algorithm in all the runs. These solutions represent

avings on the operational costs of up to € 6,127 (e.g., Instance N),

educing fixed vehicle costs by € 3,728 (i.e., using less vehicles) and

raveling shorter distances (i.e., 7144 less kilometers in one day). Con-

idering that each instance corresponds to the distribution of a single

ay, the potential annual savings are considerable. In addition, our

olutions are better with respect to all other routing indicators: less

rips needed, less distance traveled, and vehicles with less residual

apacity.

Next, we provide some statistical results on the total cost obtained

y the algorithm for all 30 runs performed for the new set of five

nstances. Table 8 shows these figures. The last column displays the

ercentage gap between the average algorithm solution and the com-

any solution, calculated as:

api = TC
GILS−VND
i − TCCOMPANY

i

TCCOMPANY
i

(3)

where TCi
GILS−V ND

is the average algorithm solution and TCCOMPANY
i

s the company solution for instance i. In the worst case, the average

ost is almost 6% better than the company solution.

. Conclusions and extensions

Real vehicle routing problems present a variety of constraints

hat are sometimes disregarded in model formulations. These re-

listic constraints may have a significant impact on the solution
mplementation. This study analyzed a Heterogeneous Fleet Multi-

rip VRP (HFMVRP) faced by a distribution company in Europe that

erves around 400 customers. This real VRP variant considers a fleet

f heterogeneous vehicles (i.e., vehicles with different capacities and

osts) with the possibility of performing multiple trips or being un-

ble to serve particular customers (for maneuverability reasons, for

xample). The objective function included the company’s set of costs:

fixed cost per vehicle used, a variable vehicle cost per distance trav-

led and a fixed cost per customer visited. Due to the difficulty of

he problem, we proposed a heuristic algorithm, the GILS-VND, that

ombines an ILS, a GRASP, and a VND. The algorithm uses the power

f the GRASP to build a feasible initial solution, and then within the

LS structure, it uses the VND as local search combined with the Re-

ne method based on several levels of perturbation. With the use

f smart mechanisms that discard solutions based on previous val-

es stored in ADSs, it was possible to enhance the solution reevalua-

ion time in up to 98.90% for one of the real instances studied in this

aper.

To test the performance of our algorithm, we experimented with

set of real instances provided by the company. These instances cor-

espond to 15 business days with all customers’ demands. First, our

lgorithm was tested against the Rand-MER algorithm by Caceres-

ruz et al. (2014) in order to compare the performance of our ap-

roach with one already validated in the literature. The computa-

ional results revealed that the GILS-VND algorithm was able to ob-

ain more economical solutions. Furthermore, the comparison with

he company solutions was also favorable and the GILS-VND algo-

ithm led to significant cost savings (estimate yearly savings are over

70,000) and better routing indicators: the total number of routes

mployed, the total distance traveled and the vehicles’ idle capacity.

esides minimizing costs, the company is also concerned about us-

ng the least number of routes with full truckload vehicles. Another

enefit of the algorithm is its speed and reliability. It was able to find

ood solutions with low variability in reduced time. This is partic-

larly interesting since routing decisions must be made daily after

eceiving all customer demands in less than 30 minutes. In addition,

he algorithm calibration is relatively simple and requires no com-

lex fine-tuning processes. Overall, the method proposed is a pow-

rful tool that can support distribution planners in their decision

aking.

As future extensions for this work, we could consider including

ime windows in the deliveries. Due to traffic constraints, for in-

tance, it is possible that certain customers cannot be served during
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some business hours. Algorithmically, new neighborhood structures

related to the consecutive customers’ relocation can be also incor-

porated. Finally, we also propose the implementation of a parallel

version of the GILS-VND algorithm to benefit from the multi-core

technology present in current machines.
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