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Abstract 

We propose a new method to determine the multi-affine fractal exponents based on a gener- 
alization of the roughness concept. For synthetic multi-attine fractal profiles with exactly known 
exponents, we show that the results obtained in this method are more accurate than the results 
obtained with the height-height correlation function method. Also in the present method, scaling 
is observed using profiles with a number of points more than one order of magnitude smaller. 

PACS: 02.70; 06.30C; 68.20 

The concept of  self-affine fractals has opened a wide area of  research because it 
represents a very powerful tool in the investigation of many complex systems found in 

nature. These structures have been found in physical systems like surface growing [ 1,2], 

fractures [3] and biological systems like DNA patterns [4] and human heartbeat [5]. 

The most important characteristics of  a self-affine fractal is the roughness exponent H 
which is a measure of  variation of its thickness with the scaling factor. Several methods 
have been used to calculate the thickness and the roughness exponent, namely, the 

variation method [6, 7], the roughness methods [7, 8], and the height-height correlation 
function [9]. 

Another type of fractals that appear in nature are the multifractals. These geometric 
structures have an infinite number of singularities and therefore need an infinite set of 
exponents to properly describe these singularities [10]. The extension of the multifractal 
ideas to self-affine fractals give rise to the multi-affine fractal concept [9, 11]. In this 
case, the profiles cannot be described by just one roughness exponent H,  but by an 
infinite number of  scaling exponents related to the qth order of the moments of  the 
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distribution considered, which obey the multiscaling power law Wq(e) ,,, gqHq, where 
e is a small scaling factor. This concept of multi-affinity is important in the study 
of  interfaces, such as, models of kinetic surface roughening [12,13]. In this work we 
use a generalization of the roughness concept in order to describe these multi-affine 
fractals. 

Before defining multi-affine fractal exponents we are going to discuss how the rough- 
ness exponent is calculated in self-affine fractals. Let us consider a discrete profile f(xi) 
with L points, where xi is the coordinate of the ith point, and f(xi) is a single value 
function. The roughness W(e) of these profiles f(xi) is the average thickness over a 
neighborhood of size e, defined as 

1 L 
W(,g) = ~i~=lw(xi,  g,), (1) 

where w(xi, e) is an appropriate measure of the local thickness, or roughness, of 
the profile f(xi) in the interval [x i -  e, xi + e]. For example, the local roughness 
w(xi, e) can be evaluated by (A) the difference between the maximum and the min- 
imum height [6,7]; (B) the dispersion around the local average height [7]; (C) the 
height-height correlation function [9]; and (D) the dispersion around the best linear 
least-square fitting [8]. The roughness W(e) exhibits a single scaling power law given 

by 

W(e) ,~ d q . (2) 

It is possible to relate this method with a cover of the profile f(xi) [6,8]. Of these 
methods, the method (D) is the one that provides the finest cover for the profile f(xi), 
therefore, giving a better estimate for the roughness exponent H [8]. In this method, 

the local roughness w(xi, e) is defined as 

1 xi+g 
W2(Xi, e)  - -  (2e + 1 - - ~  y=~._~[f(Y) - (ay + b)] 2 , (3) 

where a and b are coefficients to be determined by a least-square fitting. 
In the case of multi-affine fractal profiles, the set of exponents Hq are usually eval- 

uated using a qth order height-height correlation function [9] 

1 L 
Cq(e) = -£~lf(xi)  - f(xi-]- /3)[q , (4) 

which behaves as 

Cq(g)  ~ gqHq (5) 

for small e. It is important to note that Cq(e) can also be seen as a cover of the profile 
f(xi) as discussed above, but now one has a different cover for each moment of the 
distribution. We can expect that the imperfections of these covers increase when we 
take higher moments since we are amplifying the errors by a power of q. 
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Fig. 1. Synthetic multi-atOne profiles with bl = 0.5 and (a) b2 = 0.2, (b) b2 = 0.5 and (c) b2 = 0.8. 
At the top of  the figure the three seeds and, at the bottom, profiles are presented in the seventh stage 
(47 + 1 = 16385 points). 

It is possible to generalize the average thickness (1) in a self-affine profile to a 
multi-affine profile by defining the qth order multi-roughness function as 

1 z 
~rq(g)  ~- ~i~=lWq(Xi ' g ) ,  ( 6 )  

where the local multi-roughness Wq(Xi, e) is a generalization of Eq. (3), namely 

xi +~ 

1 1)y=~x_lf(y ) _ (ay + b)l 2q (7) W 2 ( X i ' g )  - -  ( 2 e ~  

We expect to find for the Wq(e) the scaling behavior 

Wq(  l~ ) ~.~ ,~qHq . ( 8 )  

We propose the definitions (6) and (7) because, in the case of self-affine profiles, 
it gives a better cover than the one represented by (4), specially for extreme values 
of H, H ~ 0.1 and H ~ 0.9 [8]. Moreover, the use of the dispersion around the best 
linear fitting is very useful when we deal with fractals which have sharp drifts, as in 
the examples of Fig. 1. These examples are a generalization of a recursively self-affine 
fractal with H = 0.5 that generates multi-affine profiles with exponents given exactly 
by [9] 

nq  = ln[(blq + b2q)/2] 
qln (¼) ' (9) 
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Fig. 2. The log-log plot of  the height-height correlation function Cq(e) versus the scale e for the first five 
moments of  the three profiles of  Fig. 1: (a) b2 = 0.2, (b) b2 = 0.5 and (c) b2 = 0.8 with bl = 0.5 in the 
three plots. The order of  the moments increases from the bottom to top in each plot. 
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Fig. 3. Same as Fig. 2 for the roughness Wq(e). 
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Table 1 
Comparison of the theoretical Ht values of the multi-affine exponents 
with the values obtained by the height-height correlation function method 
Hh and roughness method Hw for the three profiles in Fig. 1 and the 
respective correlation coetficients rh and rw 

q Ht Hh rh Hw rw 

b2 = 0.2 

1 0.757 0.712 0.9983 0.740 0.9999 
2 0.696 0.664 0.9992 0.683 0.9999 
3 0.652 0.627 0.9992 0.640 0.9999 
4 0.620 0.600 0.9991 0.610 0.9999 
5 0.598 0.582 0.9989 0.590 0.9999 

b2 = 0.5 

1 0.500 0.453 0.9895 0.486 0.9995 
2 0.500 0.467 0.9960 0.482 0.9994 
3 0.500 0.473 0.9975 0.482 0.9994 
4 0.500 0.476 0.9978 0.482 0.9994 
5 0.500 0.478 0.9977 0.482 0.9995 

b2 = 0.8 

1 0.311 0.278 0.9825 0.297 0.9974 
2 0.292 0.264 0.9900 0.276 0.9970 
3 0.275 0.249 0.9937 0.258 0.9970 
4 0.260 0.235 0.9957 0.243 0.9971 
5 0.248 0.224 0.9967 0.231 0.9971 

where bl and b2 are defined in Fig. 1. In order to appreciate the power o f  the method 

presented here we apply it to these profiles and compare it with the height-height  

correlation function method. 

Fig. 2 shows the graph o f  the height-height  correlation function Cq(e), defined by 

Eq. (4), versus the scaling factor e for the first five moments of  the profiles o f  Fig. 1. 

All  calculations were done with a pre-fractal in a seventh stage of  iteration (16,385 

points). In this stage the correlation function does not show the expected scaling be- 

havior and it is necessary to go to the nineth stage (262 145 points) in order to obtain 

reasonable scaling behavior [9]. 

Fig. 3 shows the graph o f  the multi-roughness Wq(e), defined by Eqs. (6)  and (7), 

as a function o f  the scaling factor e for the same profiles also in the seventh stage. 

Note that, with this method, we obtain much better linear fittings, indicating that the 

scaling is observed at earlier stages. We calculate the slope Hq and the correlation 

coefficient r ( r  = 1 corresponds to perfect fitting) for the three profiles and first five 

moments using both methods. Table 1 shows these results and the theoretical values 

o f  Hq determined by  Eq. (9). We note that the multi-roughness method presented here 

gives an estimate o f  the exponents Hq better than the correlation method. 

In order to compare the convergence o f  the two methods, we calculate the exponent 

o f  the first moment  H1 for some pre-fractals at different stages of  the iterative process. 
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Fig. 4. The linear-log plot of the exponent of the first moment H1 for some pre-fractals at different stages 
as a function of 1/L. The triangles indicate the correlation method and the circles the roughness method. 
The dotted line is the exact value and the dashed lines are guides to the eyes. 

A pre-fractal in the k-stage has L = 4 k ÷ 1 points and Fig. 4 shows the values o f  

H1 obtained with the two methods in function o f  1/L for 4~<k~<8. We note that the 

roughness method presents a consistent convergent behavior towards the exact value. 

For the correlation method, however, we observe that it seems to approach to the exact 

value, but in an irregular fashion. 

In conclusion, we introduce a method to determine the multi-affine fractal exponents 

Hq which is based on a generalization of  the roughness exponent (Eqs. (6) and (7)). 

We also compare the height-height correlation function method with the present one 

and we show that the latter provides better results and also scaling is observed at much 

earlier stages. Furthermore, the values obtained with the present method converge to 

the exact value in a more consistent manner. 
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